Django-Limiter Documentation
Release 0.1.0-5-g534fe64-dirty

Ali-Akber Saifee

January 09, 2015

Contents

Configuration 3
Rate limit string notation 5
2.1 Exampleso e e e e e e e e

Decorators 7
Rate limiting strategies 9
4.1 Fixed WINdow o e e e e 9
4.2 Fixed Window with Elastic Expiry 9
43 Moving Windowo e 9
Rate-limiting Headers 11
Recipes 13
6.1 Custom Rate limitdomains L e e 13
6.2 Using Django Class VIEWS o o i i e e e e e e e e e e e e e e e 13
6.3 LoggIng. e e e e e e e e 13
API 15
T Core .. e e e 15
7.2 EBXCEPHONS o v v i e e e e e e e 16
Usage 17
8.1 Quickstart e e e e e e e e 17
References 19
Changelog 21
10.1 0.1.02015-01-09 o o e e e e 21

Django-Limiter Documentation, Release 0.1.0-5-g534fe64-dirty

Rate limiting middleware for Django applications

Contents 1

Django-Limiter Documentation, Release 0.1.0-5-g534fe64-dirty

2 Contents

CHAPTER 1

Configuration

The following django settings are honored by the middleware.

RATELIMIT_ GLOBAL A comma (or some other delimiter) separated string that will be used to apply a global limit
on all routes. Rate limit string notation for details.

RATELIMIT CALLBACK The callback which will be called when a rate limit is hit. Defaults to a 429 status code
being returned.

RATELIMIT_KEY_ FUNCTION The default callable to use to derive the context of a request. This can either be the
callable itself or a fully qualified path to a callable. The callable to accept a single request object as a parameter
and return a string. Defaults to the ip address of the requesting user.

RATELIMIT STORAGE_URL One of memory://, redis://host:port or memcached://host :port.
Using the redis storage requires the installation of the redis package while memcached relies on pymemcache.

RATELIMIT_STRATEGY The rate limiting strategy to use. Rate limiting strategies for details.
RATELIMIT_ HEADERS_ENABLED Enables returning Rate-limiting Headers. Defaults to False
RATELIMIT ENABLED Overall kill switch for rate limits. Defaults to True

RATELIMIT HEADER LIMIT Header for the current rate limit. Defaults to X—-RateLimit-Limit

RATELIMIT HEADER_RESET Header for the reset time of the current rate limit. Defaults to
X-RateLimit-Reset

RATELIMIT_ HEADER REMAINING Header for the number of requests remaining in the current rate limit. Defaults
to X-RateLimit-Remaining

https://pypi.python.org/pypi/redis
https://pypi.python.org/pypi/pymemcache

Django-Limiter Documentation, Release 0.1.0-5-g534fe64-dirty

4 Chapter 1. Configuration

CHAPTER 2

Rate limit string notation

Rate limits are specified as strings following the format:
[count] [perl/] [n (optional)] [secondiminutelhourldaylmonthlyear]

You can combine multiple rate limits by separating them with a delimiter of your choice.

2.1 Examples

* 10 per hour

* 10/hour

10/hour;100/day;2000 per year
100/day, 500/7days

Django-Limiter Documentation, Release 0.1.0-5-g534fe64-dirty

6 Chapter 2. Rate limit string notation

CHAPTER 3

Decorators

The decorators made available as instance methods of the Limiter instance are
limit () There are a few ways of using this decorator depending on your preference and use-case.
Single decorator The limit string can be a single limit or a delimiter separated string

@limit ("100/day; 10/hour; 1/minute™)
def my_view (request)

Multiple decorators The limit string can be a single limit or a delimiter separated string or a combination of
both.

@limit ("100/day")
@limit ("10/hour")
@limit ("1/minute")
def my_view (request) :

Custom keying function By default rate limits are applied on per remote address basis. You can implement
your own function to retrieve the key to rate limit by.

def my_key_func (request) :

@limit ("100/day", my_key_func)
def my_view (request) :

Note: The key function must accept one argument whichisa django.http.HttpRequest
object

Dynamically loaded limit string(s) There may be situations where the rate limits need to be retrieved from
sources external to the code (database, remote api, etc...). This can be achieved by providing a callable
(which takes a single parameter - the django.http.HttpRequest object) to the decorator. The
callable should return a rate limit string in the Rate limit string notation.

from django.conf import settings

def rate_limit_from_config(request):
return settings.CUSTOM_LIMIT

http://django.readthedocs.org/en/latest/ref/request-response.html#django.http.HttpRequest
http://django.readthedocs.org/en/latest/ref/request-response.html#django.http.HttpRequest

Django-Limiter Documentation, Release 0.1.0-5-g534fe64-dirty

@limit (rate_limit_from_confiqg)
def my_view (request) :

Danger: The provided callable will be called for every request on the decorated route. For
expensive retrievals, consider caching the response.

shared_limit () For scenarios where a rate limit should be shared by multiple views (For example when you
want to protect views using the same resource with an umbrella rate limit).

Named shared limit

mysqgl_limit = shared_limit ("100/hour", scope="mysgl")

@mysql_limit
def my_view_1 (request) :

@mysql_ limit
def my_view_2 (request) :

Dynamic shared limit: when a callable is passed as scope, the return value of the function will be used as the
scope.

def host_scope (request) :
return request .META[’HTTP_HOST']

host_limit = limiter.shared_limit ("100/hour", scope=host_scope)
@host_limit

def my_view_1():

@host_1limit
def my_view_2():

Note: Shared rate limits provide the same conveniences as individual rate limits

¢ Can be chained with other shared limits or individual limits
* Accept keying functions

e Accept callables to determine the rate limit value

exempt () This decorator simply marks a view as being exempt from any rate limits.

8 Chapter 3. Decorators

CHAPTER 4

Rate limiting strategies

djlimiter comes with three different rate limiting strategies built-in. Pick the one that works for your
use-case by specifying it in your django settings as RATELIMIT_STRATEGY (one of fixed-window,
fixed-window—-elastic—expiry, or moving—window). The default configuration is fixed-window.

4.1 Fixed Window

This is the most memory efficient strategy to use as it maintains one counter per resource and rate limit. It does
however have its drawbacks as it allows bursts within each window - thus allowing an ‘attacker’ to by-pass the limits.
The effects of these bursts can be partially circumvented by enforcing multiple granularities of windows per resource.

For example, if you specify a 100 /minute rate limit on a route, this strategy will allow 100 hits in the last second of
one window and a 100 more in the first second of the next window. To ensure that such bursts are managed, you could
add a second rate limit of 2 /second on the same route.

4.2 Fixed Window with Elastic Expiry

This strategy works almost identically to the Fixed Window strategy with the exception that each hit results in the
extension of the window. This strategy works well for creating large penalties for breaching a rate limit.

For example, if you specify a 100 /minute rate limit on a route and it is being attacked at the rate of 5 hits per second
for 2 minutes - the attacker will be locked out of the resource for an extra 60 seconds after the last hit. This strategy
helps circumvent bursts.

4.3 Moving Window

Warning: The moving window strategy is only implemented for the redis and in-memory storage back-
ends. The strategy requires using a list with fast random access which is not very convenient to implement with a
memcached storage.

This strategy is the most effective for preventing bursts from by-passing the rate limit as the window for each limit is not
fixed at the start and end of each time unit (i.e. N/second for a moving window means N in the last 1000 milliseconds).
There is however a higher memory cost associated with this strategy as it requires N items to be maintained in memory
per resource and rate limit.

Django-Limiter Documentation, Release 0.1.0-5-g534fe64-dirty

10 Chapter 4. Rate limiting strategies

CHAPTER 5

Rate-limiting Headers

If the configuration is enabled, information about the rate limit with respect to the route being requested will be added
to the response headers. Since multiple rate limits can be active for a given route - the rate limit with the lowest time
granularity will be used in the scenario when the request does not breach any rate limits.

X-RatelLimit-Limit The total number of requests allowed for the active window
X-RateLimit-Remaining The number of requests remaining in the active window.
X-RateLimit-Reset UTC seconds since epoch when the window will be reset.

Warning: Enabling the headers has an additional cost with certain storage / strategy combinations.
* Memcached + Fixed Window: an extra key per rate limit is stored to calculate Xx-RateLimit-Reset
* Redis + Moving Window: an extra call to redis is involved during every request to calculate
X-RateLimit—-Remaining and X-RateLimit—-Reset

The header names can be customised if required by using django settings (Configuration).

11

Django-Limiter Documentation, Release 0.1.0-5-g534fe64-dirty

12 Chapter 5. Rate-limiting Headers

CHAPTER 6

Recipes

6.1 Custom Rate limit domains

By default, all rate limits are applied on a per remote address basis. However, you can easily customize your rate
limits to be based on any other characteristic of the incoming request. On a django settings level this can be achieved
by settings the RATELIMIT_KEY_FUNCTION to either point to a callable or a fully qualified path to a callable. This
callable should:

* Expect asingle django.http.HttpRequest object as a parameter.

* Return a string that classifies the request.

6.2 Using Django Class Views

If you are using a class based approach to defining view functions, the regular method of decorating a view function
to apply a per route rate limit will not work. You can add rate limits to your views by using the following approach
(also described in Decorating the class).

class MyView (django.views.generic):
def get (self):
return HttpResponse ("get")

def put (self):
return HttpResponse ("put")

urlpatterns = patterns(’’,
(r" *myview/’, limit ("2/second") (MyView.as_view())),
)
Note: This approach is limited to either sharing the same rate limit for all http methods of a given

django.views.generic.View or applying the declared rate limit independently for each http method (to ac-
complish this, pass in True to the per_method keyword argument to 1imit ()).

6.3 Logging

djlimiter uses standard python logging. To enable logging, configure the djlimiter logger in your
settings.py.:

13

http://django.readthedocs.org/en/latest/ref/request-response.html#django.http.HttpRequest
http://django.readthedocs.org/en/latest/topics/class-based-views/intro.html#id2

Django-Limiter Documentation, Release 0.1.0-5-g534fe64-dirty

LOGGING = {
"version’: 1,
"disable_existing_loggers’: False,
"handlers’ : {
"stream’ : {
"level’ : 'DEBUG’,
"class’: '"logging.StreamHandler’,
}V
}I
"loggers’ : {
"djlimiter’: {
"handlers’: [’stream’],
"level’: "INFO',
"propagate’: True,
}I
}I
}

For more details about configuring django logging refer to Configuring logging

14 Chapter 6. Recipes

http://django.readthedocs.org/en/latest/topics/logging.html#configuring-logging

CHAPTER 7

API

7.1 Core

classdjlimiter.Limiter
Bases: object

process_request (request)
Parameters request —
Returns
process_response (request, response)
Parameters
* request —
* response —
Returns

djlimiter.limit (limit_value, key_function=None, per_method=False)
decorator to be used for rate limiting individual views

Parameters

* limit_value — rate limit string or a callable that returns a string. Rate limit string notation
for more details.

* key_func (function) — function/lambda to extract the unique identifier for the rate limit.
defaults to remote address of the request.

* per_method (bool) — whether the limit is sub categorized into the http method of the request.

djlimiter.exempt (fin)
decorator to mark a view or all views in a blueprint as exempt from rate limits.

Parameters fn — the view to wrap.
Returns

djlimiter.shared_limit (limit_value, scope, key_function=None)
decorator to be applied to multiple views sharing the same rate limit.

Parameters

* limit_value — rate limit string or a callable that returns a string. Rate limit string notation
for more details.

15

http://docs.python.org/library/functions.html#object
http://docs.python.org/library/functions.html#bool

Django-Limiter Documentation, Release 0.1.0-5-g534fe64-dirty

* scope — a string or callable that returns a string for defining the rate limiting scope.

* key_func (function) — function/lambda to extract the unique identifier for the rate limit.
defaults to remote address of the request.

7.2 Exceptions

exception djlimiter.RateLimitExceeded (limit)
Bases: django.http.response.HttpResponse

exception raised when a rate limit is hit (status code: 429).

16 Chapter 7. API

CHAPTER 8

Usage

8.1 Quick start

Add the rate limiter to your django projects’ settings.py and enable a global rate limit for all views in your project:

MIDDLEWARE_CLASSES += ("djlimiter.Limiter",)
RATELIMIT_GLOBAL = "10/second; 50/hour"

In one of the apps’ view:

@limit ("5/second")
def index (request):

@exempt
def ping(request):

The above example will result in the following characteristics being applied to the django project:
* A global rate limit of 10 per second, and 50 per hour applied to all routes.
* The index route will have an explicit rate limit of 5/second
* The ping route will be exempt from any global rate limits.

Every time a request exceeds the rate limit, the view function will not get called and instead a 429 http error will be
raised.

Refer to Recipes for more examples.

17

http://tools.ietf.org/html/rfc6585#section-4

Django-Limiter Documentation, Release 0.1.0-5-g534fe64-dirty

18 Chapter 8. Usage

CHAPTER 9

References

* Redis rate limiting pattern #2
* DomainTools redis rate limiter

e limits: python rate limiting utilities

19

http://redis.io/commands/INCR
https://github.com/DomainTools/rate-limit
https://limits.readthedocs.org

Django-Limiter Documentation, Release 0.1.0-5-g534fe64-dirty

20

Chapter 9. References

cHAPTER 10

Changelog

10.1 0.1.0 2015-01-09

 first release.

21

Django-Limiter Documentation, Release 0.1.0-5-g534fe64-dirty

22

Chapter 10. Changelog

Index

E

exempt() (in module djlimiter), 15

L

limit() (in module djlimiter), 15
Limiter (class in djlimiter), 15

P

process_request() (djlimiter.Limiter method), 15
process_response() (djlimiter.Limiter method), 15

R

RateLimitExceeded, 16

S

shared_limit() (in module djlimiter), 15

23

	Configuration
	Rate limit string notation
	Examples

	Decorators
	Rate limiting strategies
	Fixed Window
	Fixed Window with Elastic Expiry
	Moving Window

	Rate-limiting Headers
	Recipes
	Custom Rate limit domains
	Using Django Class Views
	Logging

	API
	Core
	Exceptions

	Usage
	Quick start

	References
	Changelog
	0.1.0 2015-01-09

